The brutal truth is that MTF Mapper used an empirical correction factor (shock, shock, horror!) to remove the observed bias in measured MTF curves. The empirical correction factor (or rather, family of correction factors) was obtained by generating a synthetic image with a known, analytical MTF curve, and calculating the resulting ratio of the measured curve (as produced by MTF Mapper) to the expected analytical curve.
This had the advantage that it would remove both known distortions, such as that generated by the finite-difference approximation to the derivative (which Imatest refers to as the LSF correction factor), and other distortions which were produced by processes that I did not fully understand at the time.
This post will deal with two of the distortions that I have identified, and I will propose solutions that will enable MTF Mapper to do away with the empirical correction approach.
Apodization
Apodization, also called "windowing", is a way to attenuate some of the artifacts resulting from the application of the FFT (or DFT, if you like) to a signal of a finite length. The DFT/FFT assumes that the signal is periodic, that is, the first (leftmost) sample is preceded (circularly) by the last (rightmost) sample. Applying the FFT to a signal that is discontinuous when treated in this circularly wrapped-around way usually results in significant energy spuriously appearing on the high frequency end of the frequency spectrum.A common windowing function is the Hamming window, which looks like a cosine function centered on the center of the sequence of samples. The samples are multiplied component-wise with the window function, effectively producing a new set of samples such that the leftmost and rightmost samples are scaled to very low magnitudes. Since the left- and rightmost samples are now all close to zero, we are guaranteed to have a signal that no longer has a discontinuity when wrapping around the left/right ends.
So why would we use apodization as part of the slanted edge method? First, recall how the slanted edge method works:
Step 1: generate the edge spread function (ESF) |
Now we can compute the MTF as illustrated here:
Step 2: Compute MTF from PSF using FFT |
Anyhow, since the noise is random, we might end up with large values on the edges, such as can be seen on the right end of the PSF samples. This is exactly the scenario which we would like to avoid, so we can apply a window to "squash" the samples near the edges of the PSF.
MTF Mapper had been using a plain Hamming window up to now --- this resulted in a systematic bias in MTF measurements, particularly affecting edges with an MTF50 value below 0.1 cycles per pixel.
Hamming window |
Two things are visible here: the noise is suppressed reasonably well (on the ends of the green curve) after multiplying the PSF by the Hamming window function (see right side of illustration), and the PSF appears to contract slightly, effectively becoming slightly narrower after windowing.
The apparent narrowing of the PSF has the expected impact on MTF50 values: they are overestimated slightly.
I identified three possible methods to address this systematic overestimation of MTF50 values (on the low end of MTF50 values): empirical correction (as MTF Mapper has been doing so far), deconvolution, and using a different window function.
We can "reverse" the effect of the windowing after we have applied the FFT to obtain the MTF. By the convolution theorem, we know that convolution in the time domain becomes multiplication in the frequency domain. Since we multiply the PSF by the window function in the time domain, it stands to reason that we must deconvolve the MTF by the Fourier transform of the window function. Except that deconvolution is a black art that is best avoided.
I have tried many different approaches, but the high noise levels in the PSF makes for a poor experience, more apt to inject additional distortion into our MTF than to undo the slight distortion caused by windowing in the first place.
That leaves us only with the last option: choose a different window function. Purely based on aesthetics, I decided on the Tukey window with an alpha parameter of 0.6:
Tukey window |
LSF correction and beyond
As already mentioned, the finite-difference method used to calculate the PSF (or LSF, if you are pedantic) from the ESF is not identical to the ideal analytical derivative of the ESF. A sin(x)/(x) correction factor can be employed to effectively remove this distortion. The Imatest article on this topic does a fine job of explaining the maths behind this correction; the method was originally published by Burns while working at Kodac.Since MTF Mapper employs 8x oversampling, we must divide the calculated MTF by the function sin(π * f/4)/(π * f/4). Clarification: This stems from the sample spacing that is 0.125 pixels. Plugging this into the finite-difference derivative calculation as explained in the Imatest article we see that for 8x oversampling we will have a correction factor of sin(π * f/4)/(π * f/4) as opposed to the sin(π * f/2)/(π * f/2) we would have had for 4x oversampling.
Even after applying this correction factor, though, we can see a systematic difference between the expected ideal MTF and the MTF produced by the slanted edge method. To understand this (final?) distortion, we have to rewind back to the step where we construct the ESF (helpfully captioned "Step 1" above...).
The projection used to form the dense ESF samples produces a dense set of points, but these points are no longer spaced at convenient regular intervals. The FFT rather depends on being fed regularly spaced samples, so the simplest solution is to bin the samples at our desired oversampling factor. An oversampling factor of 8x thus produces bins that are 0.125 pixels wide.
Again following the path of least resistance, we simply average all the values in each bin to obtain our regularly-sampled ESF. This seems like such a harmless little detail, but if we stop and think about it, we realize that this must be a low-pass filter. Why?
Well, consider first a continuous interpolation function passing through all the ESF samples before binning. We would like to sample this function at regular intervals (0.125 pixels, to be exact), but we know that point sampling will produce horrible aliasing artifacts. The correct approach is to apply a low-pass filter, i.e., convolve our interpolating function with some filter. Let us choose a simple box filter of width 0.125 pixels. If we first convolve the interpolating function with this box filter, and then point-sample at intervals of 0.125 pixels, we end up with exactly the same result as we would obtain from binning followed by averaging all the values in each bin. This approach is optimal in terms of noise suppression for a Gaussian noise source, so even though it sounds simplistic, it is a good solution.
Fortunately, this process is easily reversible by indiscriminate application of the convolution theorem: convolution in the time domain can be reversed by dividing the MTF (in the frequency domain) by the Fourier transform of our low-pass filter. And by now we know that the Fourier transform of a box filter is the sinc() function --- all we have to do is choose the proper frequency.
At 8x oversampling, our bin width is 0.125 pixels, resulting in a low-pass filter of rect(8x). In the Fourier domain, this means we must divide the MTF by sinc(π * f/8) --- this will effectively reverse the attenuation of the MTF induced by the low-pass filter.
To illustrate the effect of these two components (discrete derivative and binning low-pass filter) we can look at a simple example using a Gaussian PSF, with no added noise, and no apoditization. We start with the dense ESF of an edge with an MTF50 value of exactly 0.25 cycles/pixel:
Figure 1: Dense ESF |
This ESF is binned into bins of width 0.125 pixels:
Figure 2: binned ESF |
Next we calculate the discrete derivative to obtain the PSF:
Figure 3: discrete PSF |
Figure 4: measured MTF curve |
Figure 5: Uncorrected MTF ratio (red) |
Figure 6: Partially corrected MTF ratio (red) |
Figure 7: Fully corrected MTF ratio (red) |
If we zoom out a bit on the last plot, we see things are not entirely rosy:
Figure 8: Fully corrected MTF ratio (red), wide view |
If we express the difference between the fully corrected curve and the expected analytical curve as a percentage of the magnitude of the analytical curve, we see that the fully corrected curve deviates only about 0.15% at 1 cyc/pixel, and only about 0.05% at 0.5 cyc/pixel (Nyquist). For reference, the relative deviation of a completely uncorrected curve is about 10% and 3% at 1 and 0.5 cyc/pixel respectively. Applying only the discrete derivative correction leaves a deviation of about 2.8% and 0.6%.
So adding the correction for the low-pass filter effect of the binning is definitely in the diminishing returns category, but I certainly aim to make MTF Mapper the most accurate tool out there, so no expense is spared.
Summary: The full correction to take care of both the finite-difference correction, and the removal of the attenuation induced by the low-pass filter (implicitly part of the binning operation) is the product of the two individual term, i.e.,
c(f) = sin(π * f/4)/(π * f/4) * sin(π * f/8)/(π * f/8),
The MTF curve is corrected by dividing by this correction factor.Accuracy evaluation
To demonstrate the effect of the new apoditization and MTF correction approaches, we can look at the MTF50 accuracy over a range of MTF50 values. For each of the MTF50 levels shown below, a number of synthetic images were rendered without adding any simulated noise --- this is to emphasize the inherent bias in measured MTF50 values. All edges were kept at a relative angle of 4.5 degrees, with 30 repetitions rendered using small sub-pixel shifts of the rectangle.Figure 9: Relative MTF50 deviation on a Gaussian PSF |
It is clear that the Hamming window + derivative correction (blue curve) produces a significant bias at low MTF50 values, raising their values artificially (as expected from the apparent narrowing of the PSF). Also note how the MTF50 values are underestimated at higher MTF50 values, which is again consistent with the effects of the binning low-pass filter.
Both the empirical correction method (red curve) and the new Tukey window plus full correction (black curve) display much lower bias in their MTF50 estimates, as seen in Figure 9.
What happens when we use a different PSF to generate our synthetic images? This time I chose the Airy + photosite aperture (square aperture, 100% fill factor) as a representative. This corresponds to something like a D7000 sensor without an OLPF, but without noise.
Figure 10: Relative MTF50 deviation on an Airy+box PSF |
Interestingly the empirical correction performed better than expected, doing almost as well as the Tukey + full correction method. This is somewhat unexpected, since the empirical correction factors were calculated from a Gaussian PSF.
Since these experiments were all performed in the absence of simulated noise, they really only test the inherent bias of the various methods. The good news is that the Tukey + full correction approach appears to be an overall improvement over the existing empirical correction, even thought the improvement is really quite small.
Adding in some noise
It always makes sense to look at both bias and variance when comparing the quality of two competing models. In this spirit, the experiments above were repeated under mild noise conditions, corresponding to roughly ISO 800 on a D7000 sensor. First up, the Gaussian PSF:Figure 11: Standard deviation of relative MTF error on Gaussian PSF |
Conclusion
MTF Mapper will employ the new apodization function (Tukey window) as well as the analytically-derived full correction in lieu of the older Hamming window + empirical correction, starting from the next release. This should be v0.4.17 onwards.The new correction method is more elegant, and makes fewer assumptions regarding the shape of the MTF curve, unlike the empirical correction that was trained on only Gaussian MTFs. But throwing out the empirical correction brings back the strong attenuation of the PSF at lower MTF50 values, so the Hamming window had to be replaced with the Tukey window.
We pay a small price for using the Tukey window, but realistically the MTF50 error should remain below 5% (for an expected MTF50 value of 0.5 c/p) even under quite noisy conditions.
In theory it should be possible to incorporate strong low-pass filtering of the PSF, followed by suitable reversal-via-division of the low-pass filter in the frequency domain. In practice, I have not seen any worthwhile improvement in accuracy. I suspect that some non-linear adaptive filter may be able to strike the right balance, but that will have to wait for now.
Frans,
ReplyDeleteTwo quick comments...
1.) There appears to be an inconsistency with the argument of the Sinc Function... sometimes "pi x f/4" and sometimes "pi x f/8". I think you likely meant the latter argument.
2.) When correcting the MTF for the Apodization Window, shouldn't you be dividing the MTF by the Sinc Squared ( i.e., the MTF of the Window ) rather than just dividing by Sinc?
Thanks!
Michael,
ReplyDeleteThank you for taking the time to read the article, and to comment. I'll try to address your comments:
1. There are two correction factors: one which takes the argument pi/4 (derivative correction) and another which takes the argument pi/8 (low-pass correction). I have re-read the article, and I think I got the right arguments in the right places. Please let me know if there is a specific place in the post where I got it wrong.
Anyhow, I have added a few sentences to clarify the fact that there are two correction terms.
2. I am not correcting the MTF for the effects of the Apoditization window --- I assume you are referring to the low-pass filter effect of the binning step? I must admit that I have had no formal training in signal processing, but I do not quite see why we would have to square the Sinc. I know that diffraction through a square aperture yields Sinc squared, but the Fourier transform of Sinc squared is a triangular function, not the rectangular function. I'd appreciate any information you may have on clarifying this.
Thanking you
Regards,
Frans
Excellent write up, Frans, until now I always glossed over the Hamming stuff :-)
ReplyDeleteQuestion: as you know I am an avid user of MTF Mapper. I've been using it to good effect on natural images to extract information about the imaging systems that captured them. The model (based in good part on your lessons here) fits fairly well on images captured with good technique thanks to a generic 'defocus' plug (gotta talk to you about that, another time).
There is one area though where my MTF Mapper results tend to pretty well always overestimate theory: the 0-0.1 cycle/pixel frequency range. This is clearly apparent when comparing measured MTF there to diffraction's theoretical MTF. Those frequencies are typically not critical so I have tended to ignore them. Here is an example produced with 0.4.16 (black dots are MTF Mapper's measured output): http://www.strollswithmydog.com/wordpress/wp-content/uploads/D810-MTF-Modeled.png
Will the changes you have outlined above improve this?
Thanks for all the great work!
Jack
BTW I don't mean to imply that MTF is at fault. It's quite possible that I am introducing the error myself:-) Any ideas would be appreciated.
DeleteHi Jack,
DeleteI have a new post to explain (part) of what is happening here.
http://mtfmapper.blogspot.com/2015/06/truncation-of-esf.html
The lighter-weight Tukey apodization function will reduce the apparent overshoot a little, but it cannot eliminate the overshoot at low frequencies completely.